

The Diploma in Brewing

Examination Syllabus

1 MODULE 1	1
1.1 Brewing Raw Materials	1
1.1.1 Malt	1
1.1.2 Adjuncts	1
1.1.3 Water	1
1.1.4 Hops	1
1.2 Milling	1
1.2.1 Malt intake, handling and storage	1
1.2.2 Milling equipment and process	
1.3 Mashing and Wort Separation	2
1.3.1 Principles and purpose of mashing	
1.3.2 Principles and purpose of wort separation	2
1.4 Wort Boiling	2
1.4.1 Principles and purpose of boiling	2

	1.4.2 Design and operation of kettles	2
	1.5 Wort Clarification, Cooling and Oxygenation	2
	1.5.1 Wort clarification	2
	1.5.2 Wort cooling and oxygenation	
2	MODULE 2	3
	2.1 Yeast Fundamentals	3
	2.1.1 Yeast morphology	
	2.1.2 Characteristics of brewing yeast	3 3
	2.1.3 Carbohydrate metabolism	3
	2.1.4 Production of flavour compounds	
	2.1.5 Basic nutritional requirements of yeast	
	2.2 Fermentation	
	2.2.1 Principal fermentation variables	3
	2.2.2 The effect of fermentation variables	
	2.2.3 Principles of design and operation of fermenting vessels	
	2.3 Yeast in Brewing	
	2.3.1 Yeast cultures	
	2.3.2 Measurement of quantity and quality	 4
	2.3.3 Yeast handling and management	
	2.3.4 Physical behaviour of yeast	
	2.4 Maturation and Cold Storage	
	2.4.1 General principles:	
	2.4.2 Processing aids	
	2.4.3 Additions to beer	4
	2.5 Beer Clarification	
	2.5.1 Sedimentation	
	2.5.2 Centrifugation	
	2.5.3 Filtration	
	2.6 The Properties of Beer	 5
	2.6.1 Beer hazes	 5
	2.6.2 Beer foam	
	2.6.3 Colour in beer	
	2.6.4 Gushing in beer	5
	2.6.5 Beer flavour components	5
	2.6.6 Flavour stability	5
	2.6.7 Types of beer microorganisms	
	2.6.8 Control factors	5
	2.6.9 Detection methods	
	2.7 Quality	6
	2.7.1 Quality management	6
	2.7.2 Laboratory analysis	6
	2.7.3 Sensory analysis	6
	2.7.4 Hygiene	6
3	MODULE 3	6
	3.1 Resource Management	6
	3.1.1 Environment	
	3.1.2 Health and safety	6
	3.1.3 Utilities	7
	3.1.4 Maintenance	7
	3.2 Fluid Mechanics	

3.2.1 Principles of fluid mechanics	7
3.2.2 Process gases	
3.3 Heat Transfer	8
3.3.1 Principles of heat transfer	
3.3.2 Steam	
3.3.3 Refrigeration	9
3.4 Process Control	9
3.4.1 Process control	9
3.4.2 Instrumentation	10
3.5 Materials of Construction	10
3.5.1 Classification and properties	
3.5.2 Applications and limitations	
3.6 Packaging	
3.6.1 Small packaging	10
3.6.2 Large packaging	10

1 MODULE 1

1.1 Brewing Raw Materials

1.1.1 Malt

- Barley kernel structure and morphology
- The malting process and its impact on malt quality
- Malt quality and brewing performance
- Typical specifications for base malts, their methods of analysis and their relevance for predicting wort composition, extract efficiency and brewery performance
- Speciality malts and their basic principles of manufacture, application and typical specifications

1.1.2 Adjuncts

- The range of adjuncts available and their typical composition
- Their basic principles of manufacture
- The applications of adjuncts in brewing
- Typical specifications for adjuncts, their methods of analysis and their relevance for predicting wort composition, extract efficiency and brewery performance

1.1.3 Water

- Characteristics and composition
- Typical specifications and their relevance for the brewing process
- The principles, functions and respective merits of methods for treating brewing water
- The basic principles of design and operation of water treatment plants
- Typical specifications for brewing water, methods of analysis and their relevance for brewing quality

1.1.4 Hops

- Selecting hops
- Hop constituents relevant to brewing
- Processed hop products and their basic principles of manufacture
- The use of hops and hop products throughout the brewing process
- Typical specifications for hops and hop products, their methods of analysis and their relevance for brewing quality

1.2 Milling

1.2.1 Malt intake, handling and storage

- The basic principles and operation of malt intake, handling and storage

1.2.2 Milling equipment and process

The basic principles of milling

- The design and operational principles of mills
- Criteria for mill selection

1.3 Mashing and Wort Separation

1.3.1 Principles and purpose of mashing

- The key enzymic processes underlying the conversion of malt and adjuncts to fermentable wort
- The design and operational principles of mashing systems

1.3.2 Principles and purpose of wort separation

- The principles of filtration applied to wort separation
- The design and operational principles of wort separation systems
- The impact of mashing and wort separation on brewery throughput, yield and quality

1.4 Wort Boiling

1.4.1 Principles and purpose of boiling

- The chemical changes that take place during boiling and their impact on product quality

1.4.2 Design and operation of kettles

- The design and operational principles of kettles
- Criteria for kettle selection

1.5 Wort Clarification, Cooling and Oxygenation

1.5.1 Wort clarification

 The design and operational principles of wort clarification systems -Criteria for clarification system selection

1.5.2 Wort cooling and oxygenation

- The design and operational principles of wort cooling and oxygenation systems
- Criteria for cooling system selection
- Criteria for oxygenation system selection

2 MODULE 2

2.1 Yeast Fundamentals

2.1.1 Yeast morphology

- Key features and functions of a yeast cell
- Mechanism of growth and cell division
- Genetic characteristics of yeast
- The outline of genetic tests for typing yeasts

2.1.2 Characteristics of brewing yeast

- Methods of characterising and evaluating brewing yeast using biochemical, microbiological and small-scale fermentation testing

2.1.3 Carbohydrate metabolism

- The selective mechanisms for transferring carbohydrate through the cell wall and conversion to fermentable sugars
- The carbohydrates not utilisable by normal brewing yeasts
- The basic differences between aerobic and anaerobic carbohydrate metabolism
- The main purpose and effects of the Embden-Meyerhof-Parnas pathway
- The significance of pyruvate in the metabolic chain
- The importance of glycerol production in NAD/NADH balance
- The importance of the pentose-phosphate pathway

2.1.4 Production of flavour compounds

- The biochemical mechanisms, flavour descriptors and thresholds for compounds produced during fermentation

2.1.5 Basic nutritional requirements of yeast

 The nutritional factors necessary to promote effective fermentation and healthy yeast

2.2 Fermentation

2.2.1 Principal fermentation variables

- Control parameters and value ranges throughout fermentation

2.2.2 The effect of fermentation variables

- The effect of fermentation control parameters on fermentation performance and the formation of beer flavour components

2.2.3 Principles of design and operation of fermenting vessels

- The design and operational principles of fermenting vessels
- Criteria for fermenting vessel selection
- The design and operational principles of fermentation systems

2.3 Yeast in Brewing

2.3.1 Yeast cultures

- The principles of isolating pure cultures
- The principles of preserving pure cultures in the laboratory
- The principles of design and operation of yeast propagation systems

2.3.2 Measurement of quantity and quality

- Methods for measuring yeast concentration
- Methods for assessing yeast viability and vitality
- Measurement and calculation of yeast growth during fermentation

2.3.3 Yeast handling and management

- The principles and design of yeast handling systems
- Selection criteria for yeast pitching

2.3.4 Physical behaviour of yeast

- The basic principles of yeast flocculation, sedimentation and adhesion

2.4 Maturation and Cold Storage

2.4.1 General principles:

- The design and operational principles of maturation systems designed for beer processing above 0°C
- The design and operational principles of cold storage systems designed for beer processing below 0°C

2.4.2 Processing aids

- The nature, purpose, function and application of processing aids

2.4.3 Additions to beer

- The nature, purpose, function and application of additions to beer

2.5 Beer Clarification

2.5.1 Sedimentation

The theory of sedimentation

2.5.2 Centrifugation

- The theory of centrifugal sedimentation
- The design and operational principles, of centrifuges and their application in breweries

2.5.3 Filtration

- The theory of filtration
- The design and operational principles of filtration systems The nature, purpose, function and application of filter aids
- Criteria for filter selection
- The effect of filtration control parameters on filter performance and filtered beer quality

2.6 The Properties of Beer

2.6.1 Beer hazes

- The nature and typical composition of biological, chill and permanent hazes
- The scientific principles behind, and relevance of, process factors in nonbiological haze formation
- The measurement of non-biological haze
- The prediction of shelf-life using accelerated haze formation techniques

2.6.2 Beer foam

- The physical principles of foam formation, collapsing and lacing
- Methods for measuring foam quality
- Factors affecting foam performance
- The nature, purpose, function and application of foam stabilisers

2.6.3 Colour in beer

- Factors affecting beer colour

2.6.4 Gushing in beer

- Factors affecting gushing

2.6.5 Beer flavour components

- The nature and contribution to beer flavour of raw materials
- The nature and origin of common flavour taints

2.6.6 Flavour stability

- The nature of flavour changes which occur during beer storage
- The importance of oxidation in causing flavour instability
- Control of oxidation throughout the brewing process
- The nature, purpose, function and application of anti-oxidants

2.6.7 Types of beer microorganisms

- Microorganisms which can be intentionally added to wort and beer and their application
- Spoilage microorganisms and their effects on beer quality

2.6.8 Control factors

 Factors that affect susceptibility/tolerance of microorganisms to grow in wort or beer

2.6.9 Detection methods

- The principles of detection and quantification of microorganisms.

2.7 Quality

2.7.1 Quality management

- Quality control principles and practices
- Quality assurance principles and practices

2.7.2 Laboratory analysis

- Analytical techniques for wort and beer
- The basic concepts applied to interpretation of analytical data

2.7.3 Sensory analysis

- Basic sensory techniques and their use in brewing

2.7.4 Hygiene

- The design and operational principles of hygienic brewing plants
- The design and operational principles of Cleaning-in-Place (CIP) systems
- The nature, purpose, function and application of detergents and sanitisers Measurement of cleaning effectiveness

3 MODULE 3

3.1 Resource Management

3.1.1 Environment

- Sustainability and climate change
- Energy conservation
- principle energy consuming activities
- energy reduction strategies
- Water conservation
- purposes for water in brewing operation
- water conservation strategies
- Waste minimization
- Brewing waste

3.1.2 Health and safety

- Fundamental considerations
- health and safety in the food and drink industry
- relevant national and local legislation and regulations
- principle of duty of care
- Management

- organisational structure and responsibilities regarding health and safety
- measuring and reviewing performance and training
- Understanding of workplace hazards and precautions
- techniques for assessing hazards and risks
- safe working practices
- accident investigation and reporting

3.1.3 Utilities

- Water use and treatment
- different types of water and their uses
- Effluent treatment
- Compressed air
- common systems for compressed air production
- components of air distribution systems
- quality requirements for brewing operations
- Managing utilities
- typical utilities usage for brewing

3.1.4 Maintenance

- Aims of maintenance
- Approaches to maintenance
- Maintenance tasks
- types and variety of maintenance tasks in brewing
- Organisation
- planning of maintenance activities
- Performance improvement
- principle performance initiatives

3.2 Fluid Mechanics

3.2.1 Principles of fluid mechanics

- Forms of fluid and fluid energy
- Properties of moving fluids
- Friction loss
- Pumps
- centrifugal pumps
- positive displacement pumps
- cavitation and net positive suction head (NPSH)
- Valves
- design features and merits of different types of valves

3.2.2 Process gases

- Gases used and typical applications
- Gas laws
- equations relating to pressure, temperature, volume and density using the perfect gas laws
- universal gas law and gas constant

- Dalton's law of partial pressures
- Gas solubility
- Henry's law and the concept of gas/liquid equilibrium
- gas/liquid solubility and temperature
- effects of hydrostatic head
- Gas dissolution
- principles of dissolving gases in liquids
- typical equipment for measurement and control
- effects of temperature and pressure on carbonation levels in beer
- Carbon Dioxide
- CO₂ recovery and pre-treatment
- liquid CO₂ storage and vaporisation methods
- Nitrogen
- nitrogen specifications
- supply, storage and vaporisation

3.3 Heat Transfer

3.3.1 Principles of heat transfer

- Forms of heat energy
- definition of specific heat
- latent heat and exothermic heat
- calculations of energy change
- Heat transfer mechanisms
- conduction, convection and radiation
- calculation of the overall heat transfer coefficient
- effects of fouling and scaling
- Heat exchanger sizing
- concept of the heat balance and heat transfer across a temperature gradient
- co-current and counter-current flow in a heat exchanger
- Plate heat exchanger designs
- construction, components and configuration of a heat exchanger
- importance of fouling/scaling problems
- CIP techniques
- heat exchanger calculations
- heat exchanger applications in brewing Jacketed vessels
- Shell and tube heat exchangers
- shell and tube heat exchanger designs and configurations
- applications in brewing
- Insulation
- function of insulation
- choice of materials

3.3.2 Steam

- Steam properties
- reasons for using steam
- temperature-energy relationship as illustrated in the Mollier chart steam tables
- specific heat of liquid water
- latent heat of vaporisation
- Steam raising and distribution
- boiler design
- pipe sizes, arrangements and design velocities
- insulation
- steam traps
- control valves, reducing vales and relief valves
- legal requirements in having a properly designed, safe system with the correct protection measures
- Principal steam applications

3.3.3 Refrigeration

- Refrigeration theory
- definition of refrigeration
- concept of pressure/temperature equilibrium in relation to the vapourcompression refrigeration process
- refrigeration cycle
- function of evaporator, compressor, condenser and expansion valve
- Refrigeration practice and the refrigeration cycle
- Principal plant items
- compressors
- condensers
- evaporator and expansion devices
- Primary refrigerants
- purpose, design and choice
- available refrigerant types and costs
- physical and chemical properties
- Secondary refrigerants
- purpose, design and choice
- chemical properties
- safety and environmental concerns
- Refrigeration applications

3.4 Process Control

3.4.1 Process control

- Basic control elements
- Sensors, controllers and actuators
- Basic on/off control
- Timers, thermostats, pressure switches, proximity switches and others
- Sequence control
- description of programmable logic controller (PLC)

- examples of plc applications
- Aim of process control
- Principles of process control
- Control arrangements
- Typical control systems
- Actuation
- Control system arrangements
- self-actuating controllers
- individual electronic analogue controls
- small local computer control
- Supervisory Control and Data Acquisition (SCADA), Management Information Systems (MIS) and other large digital systems
- comparative costs

3.4.2 Instrumentation

- Factors determining the choice of sensors
- Typical conventional sensors
- including pressure, volume flow, temperature, mass flow level and vessel contents
- Typical analytical sensors
- including CO₂, O₂, optical devices, pH, density and alcohol content

3.5 Materials of Construction

3.5.1 Classification and properties

- Carbon and low alloy steels
- Stainless steels
- Other metals including copper (and alloys), aluminium and cast iron -Plastics and glass

3.5.2 Applications and limitations

- Advantages and disadvantages
- Applications

3.6 Packaging

3.6.1 Small packaging

- Basic principles of design and operation of a filler to fill bottles and cans
- Basic plant features and control procedures from filtration through to filled containers
- The basic principles of pasteurisation and the additional precautions required for a sterile operation from filtration through to sealed container

3.6.2 Large packaging

- Basic principles of design and operation of a filler to fill kegs
- Basic plant features and control procedures from filtration through to filled containers